Thursday, February 7, 2013

Realtek Sound Improving?

A favorite pastime among gamers and audiophiles is to bash Realtek audio codecs. This may have been justified at one time. A build I did several years ago using an Intel D945GCCR motherboard with the Realtek ALC883 audio codec certainly deserved the drubbing. Even an old Sound Blaster 16 PCI was a dramatic improvement.

But a recent build using an Intel DH67BL motherboard with the Realtek ALC892 audio codec was a very pleasant surprise. In A-B listening tests, I was unable to discern the difference between the Realtek and the Asus Xonar DG (a very well regarded audio board).

It's possible that the ALC892 sounds better than the ALC883 chipset. However, the published specs of the two chipsets are too close to quibble, and frankly the horribleness of the sound of the D945GCCR motherboard would have made any specification pointless. The thing that curled my eyelids was the harsh upper midrange distortion, which if anyone measured it, would have pegged the needle. It was that nasty.

You want to know what I think? I think both Realtek chipsets are just fine. I think Realtek is a victim of industry-wide poor motherboard design. I think the problem is with the analog portion of the D945GCCR motherboard, which was designed by Intel. Intel are digital logic designers, not analog audio designers. I think they botched it with the D945GCCR, but they finally got it right with the DH67BL. The former requires an add-in sound card. The latter really is a pleasure to listen to.

I think Realtek's problem is that it's their face on the audio subsystem -- their volume controls, equalizers, effects controllers, media players (if you use them). If Realtek were smart (or a bit smarter anyway), they would let the motherboard manufacturers put their logo on those apps. Then the blame (or praise) for the sound quality would go to the board manufacturer, which actually has more to do with the sound quality anyway.

The sound really depends on the board layout, the analog design and choice of components, whereas if you get the audio codecs right, they're right -- period, end of story. It really isn't any more expensive to make a good audio codec than a poor one, so might as well make a good one. If you get a justifiable reputation for making poor audio codecs, your bottom line will suffer terminally, regardless.

Now, having said all that, I should point out that the Realtek chipsets are not as quiet as the Xonar (with noise levels in the -90 dB range, the Realteks are comparable to 16-bit conversion), whereas the Xonar approaches -120 dB, which consistent with 20 ~ 24-bit conversion. They all claim 24-bit resolution, but only the Xonar approaches actual 24-bit performance.

Make no mistake though, unless you're using this for professional studio work, 16-bits is far more resolution than you'll be able to discern with your naked ear in anything but an anechoic recording studio. As a point of reference, the noise level of a good vinyl analog recording corresponds to about 8 ~ 10-bit resolution.

No comments :

Post a Comment